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A 4-cycle in the absence of 3-cycles would require nonadjacent vertices with
two common neighbors, which Proposition 1.1.38 forbids. Finally, the vertices
12, 34, 51, 23, 45 yield a 5-cycle, so the girth is 5. ]

The Petersen graph is highly symmetric. Every permutation of {1, 2, 3, 4, 5}
generates a permutation of the 2-subsets that preserves the disjointness rela-
tion. Thas there are at least 5! = 120 isomorphisms from the Petersen graph
to itself. Exercise 43 confirms that there are no others.

1.1.41.* Definition. An automorphism of G is an isomorphism from G to G.
A graph G is vertex-transitive if for every pair u, v € V(G) there is an
automorphism that maps u to v.

The automorphisms of G are the permutations of V(G) that can be applied
to both the rows and the columns of A(G) without changing A(G).

1.1.42.* Example. Automorphisms. Let G be the path with vertex set
{1, 2, 3, 4} and edge set {12, 23, 34). This graph has two automorphisms: the
identity permutation and the permutation that switches 1 with 4 and switches
2 with 3. Interchanging vertices 1 and 2 is not an automorphism of G, although
G is isomorphic to the graph with vertex set {1, 2, 3, 4} and edge set {21, 13, 34}.

In K,,, permuting the vertices of one partite set does not change the ad-
jacency matrix; this leads to r!s! automorphisms. When r = s, we can also
interchange the partite sets; K, has 2(t!)? automorphisms.

The biclique K, is vertex-transitive if and only if r = 5. If n > 2, then P, is
not vertex-transitive, but every cycle is vertex-transitive. The Petersen graph
is vertex-transitive. [ ]

We can prove a statement for every vertex in a vertex-transitive graph by
proving it for one vertex. Vertex-transitivity guarantees that the graph “looks
the same” from each vertex.

EXERCISES

Solutions to problems generally require clear explanations written in sentences.
The designations on problems have the following meanings:

“(—=)" = easier or shorter than most,

“(4)” = harder or longer than most,

“(1)” = particularly useful or instructive,

“(%)"” = involves concepts marked optional in the text.
The exercise sections begin with easier problems to check understanding, ending with
a line of dots. The remaining problems roughly follow the order of material in the text.

1.1.1. (—) Determine which complete bipartite graphs are complete graphs.

1.1.2. (-) Write down all possible adjacency matrices and incidence matrices for a 3-
vertex path. Also write down an adjacency matrix for a path with six vertices and for a
cycle with six vertices.
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1.1.3. (—) Usingrectangular blocks whose entries are all equal, write down an adjacency
matrix for K, .

1.1.4. (—) From the definition of isomorphism, prove that G = H if and only if G = H.

1.1.5. (=) Prove or disprove: If every vertex of a simple graph G has degree 2, then G
is a cycle.
1.1.6. (—) Determine whether the graph below decomposes into copies of Py.

1.1.7. (=) Prove that a graph with more than six vertices of odd degree cannot be
decomposed into three paths.

1.1.8. (—) Prove that the 8-vertex graph on the left below decomposes into copies of K; 3
and also into copies of P.

1.1.9. (—) Prove that the graph on the right above is isomorphic to the complement of
the graph on the left.

1.1.10. (-) Prove or disprove: The complement of a simple disconnected graph must be
connected.

L] L] L] L] .

1.1.11. Determine the maximum size of a clique and the maximum size of an indepen-
dent set in the graph below.

1.1.12. Determine whether the Petersen graph is bipartite, and find the size of its
largest independent set.

1.1.13. Let G be the graph whose vertex set i3 the set of k-tuples with coordinates
in {0, 1}, with x adjacent to y when x and y differ in exactly one position. Determine
whether G is bipartite.

1.1.14. (!) Prove that removing opposite corner squares from an 8-by-8 checkerboard
leaves a subboard that cannot be partitioned into 1-by-2 and 2-by-1 rectangles. Using
the same argument, make a general statement about all bipartite graphs.
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1.1.15. Consider the following four families of graphs: A = {paths}, B = {cycles), C =
{complete graphs}, D = (bipartite graphs}. For each pair of these families, determine
all isomorphism classes of graphs that belong to both families.

1.1.16. Determine whether the graphs below are isomorphic.

s

1.1,.17. Determine the number of isomorphism classes of simple 7-vertex graphs in
which every vertex has degree 4.

1.1.18. Determine which pairs of graphs below are isomorphic.

d c » . ] o
hy 2 u y "
e Sl ot x
¢ Y
a b 4 w € S

1.1.19. Determine which pairs of graphs below are isomorphic.

1.1.20. Determine which pairs of graphs below are isomorphie.
P &%
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1.1.21. Determine whether the graphs below are bipartite and whether they are iso-
morphic. (The graph on the left appears on the cover of Wilson-Watkins [1990].)
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1.1.22. (!) Determine which pairs of graphs below are isomorphic, presenting the proof
by testing the smallest possible number of pairs.

QDR H

1.1.23. In each class below, determine the smallest n such that there exist nonisomor-
phic n-vertex graphs having the same list of vertex degrees.

(a)all graphs,  (b) loopless graphs,  (c) simple graphs.

(Hint: Since each class contains the next, the answers form a nondecreasing triple. For
part (c), use the list of isomorphism classes in Example 1.1.31.)

1.1.24. (!) Prove that the graphs below are all drawings of the Petersen graph (Definition
1.1.36). (Hint: Use the disjointness definition of adjacency.)

& A G

1.1.25. (!) Prove that the Petersen graph has no cycle of length 7.

1.1.26. (!) Let G be a graph with girth 4 in which every vertex has degree k. Prove that
G has at least 2k vertices. Determine all such graphs with exactly 2k vertices.

1.1.27. (!) Let G be a graph with girth 5. Prove that if every vertex of G has degree at
least k, then G has at least k> + 1 vertices. For k = 2 and k = 3, find one such graph
with exactly k% + 1 vertices.

1.1.28. (+) The Odd Graph Oy. The vertices of the graph O, are the k-element subsets
of {1,2,...,2k + 1}. Two vertices are adjacent if and only if they are disjoint sets. Thus
0; is the Petersen graph. Prove that the girth of O, is 6 if k > 3.

1.1.29. Prove that every set of six people contains (at least) three mutual acquaintances
or three mutual strangers.

1.1.30. Let G be a simple graph with adjacency matrix A and incidence matrix M. Prove
that the degree of v; is the ith diagonal entry in A% and in MM7. What do the entries in
position (i, j) of A and MMT say about G?

1.1.31. (!) Prove that a self-complementary graph with n vertices exists if and only if n
or n — 1 is divisible by 4. (Hint: When n is divisible by 4, generalize the structure of P,
by splitting the vertices into four groups. For n = 1 mod 4, add one vertex to the graph
constructed forn — 1.)

1.1.32. Determine which bicliques decompose into two isomorphic subgraphs.
1.1.33. Forn =5,n =7, and n = 9, decompose K, into copies of C,.
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wise isomorphic. Also decompose it into copies of Py.

1.1.35. (!) Prove that K, decomposes into three pairwise-isomorphic subgraphs if and
only if n + 1 is not divisible by 3. (Hint: For the case where n is divisible by 3, split the

vertices into three sets of equal size.)

1.1.36. Prove that if K, decomposes into triangles, then n — 1 or n — 3 is divisible by 6.
1.1.37. Let G be a graph in which every vertex has degree 3. Prove that G has no
decomposition into paths that each have at least 5 vertices.

K 1.1.34. (!) Decompose the Petersen graph into three connected subgraphs that are pair-

1.1.38. (!) Let G be a simple graph in which every vertex has degree 3. Prove that G
decomposes into claws if and only if G is bipartite.

1.1.39. (+) Determine which of the graphs in Example 1.1.35 can be used to form a
decomposition of K¢ into pairwise-isomorphic subgraphs. (Hint: Each graph that is not
excluded by some divisibility condition works.)

1.1.40. (%) Count the automorphisms of P,, C,, and K,.

1.1.41. (%) Construct a simple graph with six vertices that has only one automorphism.
Construct a simple graph that has exactly three automorphisms. (Hint: Think of a
rotating triangle with appendages to prevent flips.)

1.1.42. (x) Verify that the set of automorphisms of G has the following properties:
a) The composition of two automorphisms is an automorphism.
b) The identity permutation is an automorphism.
¢) The inverse of an automorphism is also an automorphism.
d) Composition of automorphisms satisfies the associative property.
(Comment: Thus the set of automorphisms satisfies the defining properties for a group.)

1.1.43. (x) Automorphisms of the Petersen graph. Consider the Petersen graph as de-
fined by disjointness of 2-sets in {1, 2, 3, 4, 5}. Prove that every automorphism maps
\ the 5-cycle with vertices 12,34, 51, 23,45 to a 5-cycle with vertices ab, cd, ea, be, de

determined by a permutation of {1, 2, 3, 4, 5} taking elements 1,2,3,4,5 to a,b,c,d, e,
respectively. (Comment: This implies that there are only 120 automorphisms.)

1.1.44. (*) The Petersen graph has even more symmetry than vertex-transitivity. Let
P = (uo,u1,u2,u3) and Q = (v, v1, V2, v3) be paths with three edges in the Petersen
graph. Prove that there is exactly one automorphism of the Petersen graph that maps
u; into v; fori = 0, 1, 2, 3. (Hint: Use the disjointness description.)

1.1.45. (*) Construct a graph with 12 vertices in which every vertex has degree 3 and
the only automorphism is the identity.

1.1.46. () Edge-transitivity. A graph G is edge-transitive if for all e, f € E(G) there

is an automorphism of G that maps the endpoints of e to the endpoints of f (in either or-
der). Prove that the graphs of Exercise 1.1.21 are vertex-transitive and edge-transitive.

(Comment: Complete graphs, bicliques, and the Petersen graph are edge-transitive.)
1.1.47. (x) Edge-transitive versus vertex-transitive.
a) Let G be obtained from K, with n > 4 by replacing each edge of K, with a path

of two edges through a new vertex of degree 2. Prove that G is edge-transitive but not
vertex-transitive.

b) Suppose that G is edge-transitive but not vertex-transitive and has no vertices
of degree 0. Prove that G is bipartite.

c) Prove that the graph in Exercise 1.1.6 is vertex-transitive but not edge-transitive.
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1.2. Paths, Cycles, and Trails

In this section we return to the Kionigsberg Bridge Problem, determining
when it is possible to traverse all the edges of a graph. We also we develop
useful properties of connection, paths, and cycles.

Before embarking on this, we review an important technique of proof. Many
statements in graph theory can be proved using the principle of induction.
Readers unfamiliar with induction should read the material on this proof tech-
nique in Appendix A. Here we describe the form of induction that we will use
most frequently, in order to familiarize the reader with a template for proof.

1.2.1. Theorem. (Strong Principle of Induction). Let P(n) be a statement with
an integer parameter n. If the following two conditions hold, then P(n) is
true for each positive integer n.

1) P(1) is true.
2) For all n > 1, “P(k) is true for 1 < k < n” implies “P(n) is true”.

Proof: We ASSUME the Well Ordering Property for the positive integers:
every nonempty set of positive integers has aleast element. Given this, suppose
that P(n) fails for some n. By the Well Ordering Property, there is a least n such
that P(n) fails. Statement (1) ensures that this value cannot be 1. Statement
(2) ensures that this value cannot be greater than 1. The contradiction implies
that P(n) holds for every positive integer n. u

In order to apply induction, we verify (1) and (2) for our sequence of state-
ments. Verifying (1) is the basis step of the proof: verifying (2) is the induction
step. The statement “P (k) is true for all k < n” is the induction hypothesis,
because it is the hypothesis of the implication proved in the induction step. The
variable that indexes the sequence of statements is the induction parameter:.

The induction parameter may be any integer function of the instances of
our problem, such as the number of vertices or edges in a graph. We say that
we are using “induction on n” when the induction parameter is n.

There are many ways to phrase inductive proofs. We can start at 0 to
prove a statement for nonnegative integers. When our proof of P(n) in the
induction step makes use only of P(n — 1) from the induction hypothesis, the
technique is called “ordinary” induction; making use of all previous statements
is “strong” induction. We seldom distinguish between strong induction and
ordinary induction; they are equivalent (see Appendix A).

Most students first learn ordinary induction in the following phrasing: 1)
verify that P(n) is true when n = 1, and 2) prove that if P(n) is true when n is
k, then P(n) is also true when n is k + 1. Proving P(k + 1) from P(k) fork > 1
is equivalent to proving P(n) from P(n — 1) forn > 1.
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Since T is closed, there-is a trail T’ that starts and ends at v and uses the
same edges as T. We now extend T’ along ¢’ to obtain a longer trail than 7.
This contradicts the choice of T, and hence T traverses all edges of G. ]

This proof and the resulting construction procedure (Exercise 12) are sim-
ilar to those of Hierholzer [1873]. Exercise 35 develops another proof.

Later chapters contain several applications of the statement that every
connected even graph has an Eulerian circuit. Here we give a simple one.
Wher drawing a figure G on paper, how many times must we stop and move
the pen? We are not allowed to repeat segments of the drawing, so each visit
to the paper contributes a trail. Thus we seek a decomposition of G into the
minimum number of trails. We may reduce the problem to connected graphs,
since the number of trails needed to draw G is the sum of the number needed
to draw each component.

For example, the graph G below has four odd vertices and decomposes into
two trails. Adding the dashed edges on the right makes it Eulerian.

Zy

’ | S/

1.2.33. Thegrem. For a connected nontrivial graph with exactly 2k odd ver-
tices, the minimum number of trails that decompose it is max{k, 1}.

Proof; A trail contributes even degree to every vertex, except that a non-closed
trail contributes odd degree to its endpoints. Therefore, a partition of the edges
into trails must have some non-closed trail ending at each odd vertex. Since
each trail has only two ends, 'we must use at least k trails to satisfy 2k odd
vertices. We also need at least one_trail since G has an edge, and Theorem
1.2.26 implies that one trail suffices when k = 0.

It remains to prove that k trails suffice when k > 0. Given such a graph G,
we pair up the odd vertices in G (in any way) and form G’ by adding for each
pair an edge joining its two vertices, as illustrated above. The resulting graph
G’ is connected and even, so by Theorem 1.2.26 it has an Eulerian circuit C. As
we traverse C in G, we start a new trail in G each time we traverse an edge of
G’ — E(G). This yields k trails decomposing G. [ ]

Gr

We prove theorems in general contexts to avoid work. The proof of Theorem
1.2.33 illustrates this; by transforming G into a graph where Theorem 1.2.26
applies, we avoid repeating the basic argument of Theorem 1.2.26. Exercise 33
requests a proof of Theorem 1.2.33 directly by induction.

Note that Theorem 1.2.33 considers only graphs having an even number of
vertices of odd degree. Our first result in the next section explains why.
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EXERCISES

Most problems in this book require proofs. Words like “construct”, “show”, “ob-
tain”, “determine”, ete., explicitly state that proof is required. Disproof by providing a
counterexample requires confirming that it is a counterexample.

1.2.1. (-) Determine whether the statements below are true or false.

a) Every disconnected graph has an isolated vertex.

b) A graph is connected if and only if some vertex is connected to all other vertices.

¢) The edge set of every closed trail can be partitioned into edge sets of cycles.

d) If a maximal trail in a graph is not closed, then its endpoints have odd degree.

1.2.2. () Determine whether K, contains the following (give an example or a proof of
non-existence).

a) A walk that is not a trail.

b) A trail that is not closed and is not a path.

¢) A closed trail that is not a cycle.

1.2.3. (-) Let G be the graph with vertex set {1,...,15} in which / and j are adjacent
if and only if their greatest common factor exceeds 1. Coount the components of G and
determine the maximum length of a path in G.

1.2.4. (-) Let G be a graph. For v € V(G) and e € E(G), describe the adjacency and
incidence matrices of G — v and G — e in terms of the corresponding matrices for G.

1.2.5. (—) Let v be a vertex of a connected simple graph G. Prove that v has a neighbor
in every component of G — v. Conclude that no graph has a cut-vertex of degree 1.

1.2.6. (-) In the graph below (the paw), find all the maximal paths, maximal cliques,
and maximal independent sets. Also find all the maximum paths, maximum cliques,

and maximum independent sets.

1.2.7. (-) Prove that a bipartite graph has a unique bipartition (except for interchang-
ing the two partite sets) if and only if it is connected.

1.2.8. (—) Determine the values of m and n such that K, , is Eulerian.

1.2.9. (-) What is the minimum number of trails needed to decompose the Petersen
graph? Is there a decomposition into this many trails using only paths?

1.2,10. (-) Prove or disprove;

a) Every Eulerian bipartite graph has an even number of edges.

b) Every Eulerian simple graph with an even number of vertices has an even num-
ber of edges.

1.2.11. (-) Prove or disprove: If G is an Eulerian graph with edges e, f that share a
vertex, then G has an Eulerian circuit in which ¢, f appear consecutively.

1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit
in a connected even graph.
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1.2.13. Alternative proofs that every u, v-walk contains a u, v-path (Lemma 1.2.5).

a) (ordinary induction) Given that every walk of length [ — 1 contains a path from
its first vertex to its last, prove that every walk of length / also satisfies this.

b) (extremality) Given a u, v-walk W, consider a shortest u, v-walk contained in W.

1.2.14. Prove or disprove the following statements about simple graphs. (Comment:
“Distinct” does not mean “disjoint”.)

a) The union of the edge sets of distinct «, v-walks must contain a cycle.

b) The union of the edge sets of distinct «, v-paths must contain a cycle.

1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle.
Prove that some edge of W repeats immediately (once in each direction).

1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove
that W contains the edges of a cycle through e.

1.2.17. (!) Let G, be the graph whose vertices are the permutations of {1,..., n}, with
two permutations ay, ..., a, and by, ..., b, adjacent if they differ by interchanging a pair
‘of adjacent entries (G3 shown below). Prove that G, is connected.

123 213
132 231

312 321

1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in
{0, 1}, with x adjacent to y if x and y differ in exactly two positions. Determine the
number of components of G.

1.2.19. Let r and s be natural numbers. Let G be the simple graph with vertex set
T v,-1 such that v; « v; if and only if |j —i| € {r,5s). Prove that § has exactly k
components, where k is the greatest common divisor of {n, r, s}.

1.2.20. (1) Let v be a cut-vertex of a simple graph G. Prove that G — v is connected.

1.2.21. Let G be a self-complementary graph. Prove that G has a cut-vertex if and only
if G has a vertex of degree 1. (Akiyama-Harary [1981])

1.2.22. Prove that a graph is connected if and only if for every partition of its vertices
into two nonempty sets, there is an edge with endpoints in both sets.

1.2.23. For each statement below, determine whether it is true for every ccmnnected
simple graph G that is not a complete graph.

a) Every vertex of G belongs to an induced subgraph isomorphic to Ps.

b) Every edge of G belongs to an induced subgraph isomorphic to Ps.

1.2.24. Let G be a simple graph having no isolated vertex and no induced subgraph
with exactly two edges. Prove that G is a complete graph.

1.2.25. (!) Use ordinary induction on the number of edges to prove that absence of odd
cycles is a sufficient condition for a graph to be bipartite.

1.2.26. (!) Prove that a graph G is bipartite if and only if every subgraph H of G has an
independent set consisting of at least half of V(H).
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1.2.27. Let G, be the graph whose vertices are the permutations of {1, ..., n}, with two
permutations ay,...,a, and by, ..., b, adjacent if they differ by switching two entries.
Prove that G, is bipartite (G3 shown below). (Hint: For each permutation a, count the
pairs i, j such that i < j and g; > g;; these are called inversions.)

123 213

132 231

312 321

1.2.28. (!) In each graph below, find a bipartite subgraph with the maximum number of
edges. Prove that this is the maximum, and determine whether this is the only bipartite
subgraph with this many edges.

1.2.29. (!) Let G be a connected simple graph not having P; or C3 as an induced sub-
graph. Prove that G is a biclique (complete bipartite graph).

1.2.30. Let G be a simple graph with vertices uy, ..., v,. Let A* denote the kth power of
the adjacency matrix of G under matrix multiplication. Prove that entry i, j of A* is the
number of v;, v;-walks of length k in G. Prove that G is bipartite if and only if, for the
odd integer r nearest to n, the diagonal entries of A" are all 0. (Reminder: A walk is an
ordered list of vertices and edges.)

1.2.31. () Non-inductive proof of Theorem 1.2.23 (see Example 1.2.21).

a) Given n < 2%, encode the vertices of K, as distinct binary k-tuples. Use this to
construct & bipartite graphs whose union is K,,.

b) Given that K, is a union of bipartite graphs G, .. ., Gy, encode the vertices of K,
as distinct binary k-tuples. Use this to prove that n < 2%.

1.2.32. The statement below is false. Add a hypothesis to correct it, and prove the
corrected statement.
“Every maximal trail in an even graph is an Eulerian circuit.”

1.2.33. Use ordinary induction on k or on the number of edges (one by one) to prove
that a connected graph with 2k-odd vertices decomposes into & trails if k£ > 0. Does this
remain true without the connectedness hypothesis?

1.2.34. Two Eulerian circuits are equivalent if they have the same unordered pairs of

.consecutive edges, viewed cyclically (the starting point and direction are unimportant).

A cycle, for example, has only one equivalence class of Eulerian circuits. How many
equivalence classes of Eulerian circuits are there in the graph drawn below?
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1.2.35. Tucker’s Algorithm. Let G be a connected even graph. At each vertex, partition
the incident edges into pairs (each edge appears in a pair for each of its endpoints).
Starting along a given edge e, form a trail by leaving each vertex along the edge paired
with the edge just used to enter it, ending with the edge paired with e. This decomposes
G into closed trails. As long as there is more than one trail in the decomposition, find
two trails with a common vertex and combine them into a longer trail by changing the
pairing at a common vertex. Prove that this procedure works and produces an Eulerian
circuit as its final trail. (Tucker [1976])

1.2.36. (+) Alternative characterization. of Eulerian graphs.

a) Prove that if G is Eulerian and G' = G — uv, then G’ has an odd number of u, v-
trails that visit v only at the end. Prove also that the number of the trails in this list
that are not paths is even. (Toida [1973])

b) Let v be a vertex of odd degree in a graph. For each edge ¢ incident to v, let c(e)
be the number of cycles containing e. Use Ze c(e) to prove that c(e) is even for some e
incident to v. (McKee [1984])

¢) Use part (a) and part (b) to conclude that a nontrivial connected graph is Eulerian
if and only if every edge belongs to an odd number of cycles.

1.2.37. (!) Usc cxtremality to prove that the connection relation is transitive. (Hint:
Given a u, v-path P and a v, w-path Q, consider the first vertex of P in 0.)

1.2.38. (!) Prove that every n-vertex graph with at least n edges contains a cycle.

1.2.39. Suppose that every vertex of a loopless graph G has degree at least 3. Prove
that G has a cycle of even lengin. (Hint: Consider a maximal path.) (P. Kwok)

1.2.40. (!) Let P and Q be paths of maximum length in a connected graph G. Prove
that P and Q have a common vertex.
1.2.41. Let G be a connected graph with at least three vertices. Prove that G has

two vertices x, y such that 1) G — {x, y} is connected and 2) x, y are adjacent or have a
common neighbor. (Hint: Consider a longest path.) (Chung [1978a])

1.2.42. Let G be a connected simple graph that does not have P4 or C4 as an induced
subgraph. Prove that G has a vertex adjacent to all other vertices. (Hint: Consider a
vertex of maximum degree.) (Wolk [1965])

1.2.43. (+) Use induction on & to prove that every connected simple graph with an even
number of edges decomposes into paths of length 2. Does the conclusion remain true if
the hypothesis of connectedness is omitted?

1.3. Vertex Degrees and Counting

The degrees of the vertices are fundamental parameters of a graph. We
repeat the definition in order to introduce important notation.

1.3.1. Definition. The degree of vertex v in a graph G, written dg(v) or d(v),
1s the number of edges incident to v, except that each loop at v counts twice.
The maximum degree is A(G), the minimum degree is §(G), and G is reg-
ular if A(G) = §(G). Itis k-regular if the common degree is k. The neigh-
borhood of v, written Ng(v) or N(v), is the set of vertices adjacent to v.
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1.3.2. Definition. The order of a graph G, written n(G), is the number of
vertices in G. An n-vertex graph is a graph of order n. The size of a
graph G, written ¢(G), is the number of edges in G. For n € N, the notation
[n] indicates the set (1, ..., n}.

Since our graphs are finite, n(G) and ¢(G) are well-defined nonnegative
integers. We also often use “e” by itself to denote an edge. When e denotes a
particular edge, it is not followed by the name of a graph in parentheses, so
the context indicates the usage. We have used “n-cycle” to denote a cycle with
n vertices; this is consistent with “n-vertex graph”.

COUNTING AND BIJECTIONS

We begin with counting problems about subgraphs in a graph. The first
such problem is to count the edges; we do this using the vertex degrees. The
resulting formula is an essential tool of graph theory, sometimes called the
“First Theorem of Graph Theory” or the “Handshaking Lemma”.

1.3.3. Proposition. (Degree-Sum Formula) If G is a graph, then
Y evicy d(v) = 2¢(G).

Proof: Summing the degrees counts each edge twice, since each edge has two
ends and contributes to the degree at each endpoint. [ |

The proof holds even when G has loops, since a loop contributes 2 to the
degree of its endpoint. For a loopless graph, the two sides of the formula count
the set of pairs (v, e) such that v is an endpoint of e, grouped by vertices or
grouped by edges. “Counting two ways” is an elegant technique for proving
integer identities (see Exercise 31 and Appendix A).

The degree-sum formula has several immediate corollaries. Corollary 1.3.5
applies in Exercises 9-13 and in many arguments of later chapters.

1.3.4. Corollary. In a graph G, the average vertex degree is i—‘%’, and hence
8(G) < O < A(G). .

n(G)

1.3.5. Corollary. Every graph has an even number of vertices of odd degree.
No graph of odd order is regular with odd degree. [ ]

1.3.6. Corollary. A k-regular graph with n vertices has nk/2 edges. [ ]
We next introduce an important family of graphs.

1.3.7. Definition. The k-dimensional cube or hypercube @, is the sim-
ple graph whose vertices are the k-tuples with entries in {0, 1} and whose
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To find the modification when N(w) # §, we choose x € S and z ¢ S so that
w <« z and w ¢ x. We want to add wx and delete wz, but we must preserve
vertex degrees. Since d(x) > d(z) and already w is a neighbor of z but not x,
there must be a vertex y adjacent to x but not to z. Now we delete {wz, xy} and
add {wx, yz) to increase |N(w) N §|. ]

Theorem 1.3.31 tests a list of » numbers by testing a list of n — 1 numbers;
it yields a recursive algorithm to test whether & is graphic. The necessary
condition “Y_d; even” holds implicitly: } 4 = (3_d;) — 2A implies that }_d;
and ) d; have the same parity.

An algorithmic proof using “local change” pushes an object toward a de-
sired condition. This can be phrased as proof by induction, where the induction
parameter is the “distance” from the desired condition. In the proof of Theorem
1.3.81, this distance is the number of vertices in S that are missing from N(w).

We used edge switches to transform an arbitrary graph with degree se-
quence d into a graph satisfying the desired condition. Next we will show that
every simple graph with degree sequence d can be transformed by such switches
into every other.

1.3.32. Definition. A 2-switch is the replacement of a pair of edges xy and
zw in a simple graph by the edges yz and wx, given that yz and wx did not
appear in the graph originally.

v z y z
iR i —e
I |
il I 1
] 1
| ] 1
- — &
X w £ w

The dashed lines above indicate nonadjacent pairs. If y & zor w © x,
then the 2-switch cannot be performed, because the resulting graph would not
be simple. A 2-switch preserves all vertex degrees. If some 2-switch turns H
into H*, then a 2-switch on the same four vertices turns H* into H. Below we
illustrate two successive 2-switches.
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1.3.33.* Theorem. (Berge [1973, p153-154]) If G and H are two simple graphs
with vertex set V, then dg(v) = dy (v) for every v € V if and only if there is
a sequence of 2-switches that transforms G into H.

Proof: Every 2-switch preserves vertex degrees, so the condition is sufficient.
Conversely, when dg(v) = dy(v) for all v € V, we obtain an appropriate se-
quence of 2-switches by induction on the number of vertices, n. If n < 3, then
for each d;, . .., d, there is at most one simple graph with 4(v;) = d;. Hence we
can use n = 3 as the basis step.

Consider n > 4, and let w be a vertex of maximum degree, A. Let § =
{v1,...,va} be a fixed set of vertices with the A highest degrees other than w.
As in the proof of Theorem 1.3.31, some sequence of 2-switches transforms G
to a graph G* such that Ng.(w) = §, and some such sequence transforms H to

a graph H* such that Ny.(w) = §.
W 7] W
TN TINS 7N
ﬁa » [» 3>
./ S = S S =
Hi
G G* H* H

G!’

Since Ng.(w) = Np.(w), deleting w leaves simple graphs G' = G* — w
and H' = H* — w with dg (v) = dy-(v) for every vertex v. By the induction
hypothesis, some sequence of 2-switches transforms G’ to H'. Since these do nct
involve w, and w has the same neighbors in G* and H*, applying this sequence
transforms G* to H*. Hence we can transform G to H by transforming G to G*,
then G* to H*, then (in reverse order) the transformation of H to H*. [ ]

We could also phrase this using induction on the number of edges appear-
ing in exactly one of G and H, which is 0 if and only if they are already the
same. In this approach, it suffices to find a 2-switch in G that makes it closer
to H or a 2-switch in H that makes it closer to G.

EXERCISES

A statement with a parameter must be proved for all values of the parameter; it
cannot be proved by giving examples. Counting a set includes providing proof.

1.3.1. (—) Prove or disprove: If u and v are the only vertices of odd degree in a graph G,
then G contains a u, v-path.

1.3.2. () In a class with nine students, each student sends valentine cards to three
others. Determine whether it is possible that each student receives cards from the same
three students to whom he or she sent cards.
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1.3.3. (=) Let u and v be adjacent vertices in a simple graph G. Prove that uv belongs
to at least d(u) + d(v) — n(G) triangles in G.

1.3.4. (—) Prove that the graph below is isomorphic to Q4.

1.3.5. (—) Count the copies of P; and C4 in Q;.

1.3.6. (—) Given graphs G and H, determine the number of components and maximum
degree of G + H in terms of the those parameters for G and H.

1.3.7. (=) Determine the maximum number of edges in a bipartite subgraph of P,, of
C,, and of K,,.

1.3.8. (—) Which of the following are graphic sequences? Provide a construction or a
proof of impossibility for each.

a) (5,5,4,3,2,2,2,1), ©(5,6,5,3,2,2,1,1),
b} (5,5,4,4,2,2,1,1), d) (5,5,5,4,2,1,1,1).
. L ] L ] L] L

1.3.9. In a league with two divisions of 13 teams each, determine whether it is possi-
ble to schedule a season with each team playing nine games against teams within its
division and four games against teams in the other division.

1.3.10. Let/, m, n be nonnegative integers with/ + m = n. Find necessary and sufficient
conditions on [, m,n such that there exists a connected simple n-vertex graph with /
vertices of even degree and m vertices of odd degree.

1.3.11. Let W be a closed walk in a graph G. Let H be the subgraph of G consisting of
edges used an odd number of times in W. Prove that dy (v) is even for every v € V(G).

1.8.12. (!) Prove that an even graph has no cut-edge. For each k > 1, construct a
2k + 1-regular simple graph having a cut-edge.

1.3.13. (+) A mountain range is a polygonal curve from (a, 0) to (b, 0) in the upper
half-plane. Hikers A and B begin at (a, 0) and (b, 0), respectively. Prove that A and
B can meet by traveling on the mountain range in such a way that at all times their
heights above the horizontal axis are the same. (Hint: Define a graph to model the
movements, and use Corollary 1.3.5.) (Communicated by D.G. Hoffman.)
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1.3.14. Prove that every simple graph with at least two vertices has two vertices of
equal degree. Is the conclusion true for loopless graphs?

1.3.15. For each k > 3, determine the smallest n such that
a) there is a simple k-regular graph with n vertices.
b) there exist nonisomorphic simple k-regular graphs with n vertices.

1.3.16. (+) For k = 2 and g > 2, prove that there exists an k-regular graph with girth
8. (Hint: To construct such a graph inductively, make use of an k& — 1-regular graph H
with girth g and a graph with girth [g/2] that is n(H)-regular. Comment: Such a graph
with minimum order is a (k, g)-cage.) (Erdds—Sachs [1963])

1.3.17. (!) Let G be a graph with at least two vertices. Prove or disprove:
a) Deleting a vertex of degree A(G) cannot increase the average degree.
b) Deleting a vertex of degree 5(G) cannot reduce the average degree.

1.3.18. (!) For k = 2, prove that a k-regular bipartite graph has no cut-edge.

1.3.19. Let G be a claw-free graph. Prove that if A(G) > 5, then G has a 4-cycle. For
all n € N, construct a 4-regular claw-free graph of order at least n that has no 4-cycle.

1.3.20. (1) Count the cycles of length n in K, and the cycles of length 2n in K,,,.
1.3.21. Count the 6-cycles in K, ,.

1.3.22. (!) Let G be a nonbipartite graph with n vertices and minimum degree k. Let [
be the minimum length of an odd cycle in G.

a) Let C be a cycle of length I in G. Prove that every vertex not in V (C) has at most
two neighbors in V(C).

b) By counting the edges joining V(C) and G — V(C) in two ways, prove thatn > ki/2
(and thus [ < 2n/k). (Campbell-Staton [1991])

¢) When k is even, prove that the inequality of part (b) is best possible. (Hint: form
a graph having k/2 pairwise disjoint [-cycles.)

1.3.23. Use the recursive description of @, (Example 1.3.8) to prove that e(Q;) = k2*-1,
1.3.24. Prove that K3 3 is not contained in any hypercube Q.

1.3.25. (!) Prove that every cycle of length 2r in a hypercube is contained in a subcube
of dimension at most r. Can a cycle of length 2r be contained in a subcube of dimension
less than r?

1.3.26. (!) Count the 6-cycles in Q3. Prove that every 6-cycle in Q; lies in exactly one
3-dimensional subcube. Use this to count the 6-cycles in Q, for k > 3.

1.3.27. Given k € N, let G be the subgraph of Qy,; induced by the vertices in which the
number of ones and zeros differs by 1. Prove that G is regular, and compute n(G), e(G),
and the girth of G.

1.3.28. Let V be the set of binary k-tuples. Define a simple graph Q} with vertex set V
by putting u <> v if and only if ¥ and v agree in exactly one coordinate. Prove that 0, is
isomorphic to the hypercube Q; if and only if k is even. (D.G. Hoffman)

1.3.29. (x+) Automorphisms of the k-dimensional cube Q.

a) Prove that every copy of Q; in Q; is a subgraph induced by a set of 2/ vertices
having specified values on a fixed set of k — j coordinates. (Hint: Prove that a copy of
Q; must have two vertices differing in j coordinates.)

b) Use part (a) to count the automorphisms of Q.
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1.3.30. Prove that ¢very edge in the Petersen graph belongs £o exactly four 5-cycles,
and use this to show that the Petersen graph has exactly twelye 5-cycles. (Hint: For the
first part, extend the \edge to a copy of P, and apply Propositign 1.1.38.)

1.3.31. () Use complete graphs and counting arguments (1fot algebra!) to prove that
a) () = () +k(r A b + (") for 0 <k <.

b)If Y n; =n, then 3 (%) < (3)-

1.3.32. (!) Prove that the number of simple even graphs with vertex set [n] is 2("2"),
(Hint: Establish a bijectiqn to the set of all simple grfphs with vertex set [n — 1].)

1.3.33. (+) Let G be a triangle-free simple n-vertey graph such that every pair of non-
adjacent vertices has exactly two common neighbagf's.

a) Prove that n(G) = 1\ (“y’), where x € V{G). Conclude that G is regular.

b) When k = 5, prove that deleting any onefvertex and its neighbors from G leaves
the Petersen graph. (Comment: When k = 5, tlie graph G is in fact the graph obtained
from Q4 by adding edges joinink complementafy vertices.)

1.3.34. (+) Let G be a kite-free simple n-veytex graph such that every pair of nonadja-
cent vertices has exactly two comrhon neighbors. Prove that G is regular. (Galvin)

1.3.35. (+) Let n and k be integers buch fhat 1 < k <n — 1. Let G be a simple n-vertex
graph such that every k-vertex induded gubgraph of G has m edges.

a) Let G’ be an induced subgraplf of G with / vertices, where | > k. Prove that
e(G) =m()/(,73)-

b) Use part (a) to prove that G/c \K,, K,}. (Hint: Use part (a) to prove that the
number of edges with endpoints u, 4 is ihdependent of the choice of u and v.)

1.3.36. Let G be a 4-vertex grgph whoge list of subgraphs obtained by deleting one
vertex appears below. Determiyle G.

744\ P W

1.3.37. Let H be a grgph formed by deletinlg a vertex from a loopless regular graph G
with n(G) = 3. Descrjbe (and justify) a method for obtaining G from H.

1.3.38. Let G be a gfaph with at least 3 vertites. Prove that G is connected if and only if
at least two of the gubgraphs obtained by del¢ting one vertex of G are connected. (Hint:
Use Proposition 1/2.29.)

1.3.39. (x+) Prgve that every disconnected graph G with at least three vertices is re-
constructible. (fint: Having used Exercise 1.8.38 to determine that G is disconnected,
use Gy, ..., G/'to find a component M of G thag occurs the most times among the compo-
nents with the maximum number of vertices, fise Proposition 1.2.29 to choose v so that
L = M — y/is connected, and reconstruct G by finding some G — v; in which a copy of M
became A copy of L.)

1.3.4f. () Let G be an n-vertex simple graph, where n > 2, Determine the maximum
posgible number of edges in G under each of the\following conditions.

a) G has an independent set of size a.

b) G has exactly k components.

¢) G is disconnected.

Section 1.3: Vertex Degrees and Counting 51

1.3.41. (!) Pyove or disprove: If G is an n-vertex simple graph with maximum degree
[#/2] and mihimum degree [7/2] — 1, then G is connected.

1.3.42. Let S\be a set of vertices in a k-regular graph G sugh that no two vertices in
§ are adjaceny or have a common neighbor. Use the pigeonlfiole principle to prove that
IS] < |n(G)/(k W 1)). Show that the bound is best possible for the cube Q3. (Comment:
The bound is ndt best possible for Q,.)

1.3.43. (+) Let ({ be a simple graph with no isolated vertjces, and let a = 2¢(G)/n(G) be
the average degreg in G. Let ¢(v) denote the average of the degrees of the neighbors of v.
Prove that r(v) = 4 for some v € V(G). Construct an indinite family of connected graphs
such that r(v) > « for every vertex v. (Hint: For the first part, compute the average of
1(v), using that x/W+ v/x > 2 when x. v > 0.) (AjtaifKomlés—Szemerédi [1980])

1.3.44. (!) Let G be a loopless graph with average vertex degree a = 2¢(G)/n(G).

a) Prove that @ —.x has average degree at leagt a if and only if d(x) < a/2.

b) Use part (a)\to give an algorithmic proof fhat if @ > 0, then G has a subgraph
with minimum degrde greater than a/2.

¢) Show that there is no constant ¢ greaffer than 1/2 such that G must have a
subgraph with minimum degree greater than fa; this proves that the bound in part (b)
is best possible. (Hint\ Use K;,-;.)

1.3.45. Determine the\ maximum number ¢f edges in a bipartite subgraph of the Pe-
tersen graph.

1.8.46. Prove or disproje: Whenever th¢ algorithm of Theorem 1.3.19 is applied to a
bipartite graph, it finds the bipartite suljgraph with the most edges (the full graph).

1.3.47. Use induction on\n(G) to proye that every nontrivial loopless graph G has a
bipartite subgraph H such\that H hag more than ¢(G)/2 edges.

1.3.48. Construct graphs G\, Gs. .../ with G, having 2n vertices, such that lim, .., f, =
1/2, where f, is the fraction bf E(G),) belonging to the largest bipartite subgraph of G,,.

1.3.49. Foreach k € N and eadh Ig opless graph G, prove that G has a k-partite subgraph
H (Definition 1.1.12) such thal efH) > (1 — 1/k)e(G).

1.3.50. (+) For n = 3, determing the minimum number of edges in a connected n-vertex
graph in which every edge belgi\gs to a triangle. (Erdés [1988])

1.3.61. (+) Let G be a simpl¢ n{vertex graph, where n > 3.

a) Use Proposition 1.3.71 t¢ prove that if G has more than n?/4 edges, then G has
a vertex whose deletion leafes algraph with more than (n — 1)%/4 edges. (Hint: In every
graph, the number of edges is an integer.) .

b) Use part (a) to prgve by ihduction that G contains a triangle if e(G) > n®/4.

1.3.52. Prove that every n-vertex\triangle-free simple graph with the maximum number
of edges is isomorphic fo K ./2).ryq. (Hint: Strengthen the proof of Theorem 1.3.23.)

1.3.53. (!) Each ganje of bridge ihvolves two teams of two partners each. Consider
a club in which fourfplayers cannot play a game if two of them have previously been
partners that night/ Suppose that A5 members arrive, but one decides to study graph
theory. The other 44 people play unijl each has been a partner with four others. Next
they succeed in playing six more garhes (12 partnerships), but after that they cannot
find four playerycontaining no pair of previous partners. Prove that if they can convince
the graph thegrist to play, then at leakt one more game can be played. (Adapted from
Bondy-Mur}§ [1976, p111)).
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1.3.54. (+) Let G be a simple
triangles in G and G together.

a) Prove that 1(G) = (}) — (n v (') triangles. (Hint: Consider
the contribution made to each side bk each le of vertices.

aph with n vertices. 1(G) be the total number of

(Goodman [1959])

1.3.55. (+) Maximu
a) Let G be
A(G)?, with
b) Let a simple connected P;-free
e(G) < k%.ABeinsche [1974), Chung—West [1993

1
1.3.56. Use induction (on n or on ) _ d;) to prove that if ;. .... d, are nonnegative inte-
gers and 3 d; is even, then there is an n-vertex graph with vertex degrees dy, ..., di
(Comment: This requests an alternative proof of Proposition 1.3.28.)

h with maximum degree k. Prove that

1.3.57. (1) Let n be a positive integer. Let d be a list of n nonnegative integers with even
sum whose largest entry is less than n and differs from the smallest entry by at most 1.
Prove that d is graphic. (Hint: Use the Havel-Hakimi Theorem. Example: 443333 is
such a list, as is 33333322.)

1.3.58. Generalization of Havel-Hakimi Theorem. Given a nonincreasing list d of non-
negative integers, let @’ be obtained by deleting d; and subtracting 1 from the k largest
elements remaining in the list. Prove that d is graphic if and only if 4’ is graphic. (Hint:
Mimic the proof of Theorem 1.3.31.) (Wang-Kleitman [1973])

1.3.59. Defined = (dy, ..., doy) by do; = dsi_1 =i for 1 =i < k. Prove that d is graphic.
(Hint: Do not use the Havel-Hakimi Theorem.)

1.3.60. (+) Let d be a list of integers consisting of k copies of a and n - k copies of b,
with a > b > 0. Determine necessary and sufficient conditions for d to be graphic.

1.3.61. (!) Suppose that G = G and that n(G) = 1 mod 4. Prove that G has at least one
vertex of degree (n(G) — 1)/2.

1.3.62. Suppose that n is congruent to 0 or 1 modulo 4. Construct an n-vertex simple
graph G with () edges such that A(G) - §(G) < 1.

1.3.63. () Let dy,...,d, be integers such that d, > -.- > d, > 0. Prove that there is
a loopless graph (multiple edges allowed) with degree sequence d,, ..., d, if and only if
zd; isevenand d) < ds + - +d,. (Hakimi [1962])

1.3.64. (!) Let d; < --- < d, be the vertex degrees of a simple graph G. Prove that G is
connected if d; = j when j < n — 1 —d,. (Hint: Consider a component that omits some
vertex of maximum degree.)

1.3.65. (+) Let a; < --- < a; be distinct positive integers. Prove that there is a simple
graph with a; + 1 vertices whose set of distinct vertex degrees is ay, ..., a;. (Hint: Use
induction on k to construct such a graph.) (Kapoor—Polimeni-Wall [1977])

1.3.66. () Expansion of 3-regular graphs (see Example 1.3.26). For n = 4k, where
k = 2, construct a connected 3-regular simple graph with n vertices that has no cut-
edge but cannot be obtained from a smaller 3-regular simple graph by expansion. (Hint:
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1.3.68. (%) d H be two simple bipartite graphs, each with bipartition X, Y.
Prove thg’ds(v) = diNv) for all v € X UY if and only if there is a sequence of 2-switches

1.4. Directed Graphs

We have used graphs to model symmetric relations. Relation need not be
symmetric; in general, a relation on S can be any set of ordered pairs in § x §
(see Appendix A). For such relations, we need a more general model.

DEFINITIONS AND EXAMPLES

Seeking a graphical representation of the information in a general relation
on § leads us to a model of directed graphs.

1.4.1. Example. For natural numbers x, y, we say that x is a “maximal divisor”
of yif y/x is a prime number. For § C N, the set R = {(x, y) € $%: x is a maximal
divisor of y) is a relation on S. To represent it graphically, we name a point
in the plane for each element of § and draw an arrow from x to y whenever

(x,y) € R. Below we show the result when § = [12]. [ ]
8 12
10 4 6 9
Te 5 3 1l

1.4.2. Definition. A directed graph or digraph G is a triple consisting of a
vertex set V(G), an edge set E(G), and a function assigning each edge
an ordered pair of vertices. The first vertex of the ordered pair is the tail
of the edge, and the second is the head; together, they are the endpoints.
We say that an edge is an edge from its tail to its head.
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1.4.27. Definition. An orientation of a graph G is a digraph D obtained from
G by choosing an orientation (x — y or y — x) for each edge xy € E(G).
An oriented graph is an orientation of a simple graph. A tournament
is an orientation of a complete graph.

An oriented graph is the same thing as a loopless simple digraph. When
the edges of a graph represent comparisons to be performed among items cor-
responding to the vertices, we can record the results by putting x — y when x
does better than y in the comparison. The outcome is an orientation of G.

The number of oriented graphs with vertices vy, ..., v, is 3®); the number
of tournaments is 22,

1.4.28, Example. Orientations of complete graphs model “round-robin tourna-
ments”. Consider an n-team league where each team plays every other exactly
once. For each pair u, v, we include the edge uv if ¥ wins or vu if v wins. At
the end of the season we have an orientation of K,,. The “score” of a team is its
outdegree, which equals its number of wins.

We therefore call the outdegree sequence of a tournament its score se-
quence. The outdegrees determine the indegrees, since d*(v) +d " (v) =n -1
for every vertex v. It is easier to characterize the score sequences of tourna-
ments than the degree sequences of simple graphs (Exercise 35). [ ]

A tournament may have more than one vertex with maximum outdegree,
so there may be no clear “winner”—in the example below, every vertex has
outdegree 2 and indegree 2. Choosing a champion when several teams have
the maximum number of wins can be difficult. Although there need not be a
clear winner, we show next that there must always be a team x such that, for
every other team z, either x beats z or x beats some team that beats z.

1.4.29. Definition. In a digraph, a king is a vertex from which every vertex is
reachable by a path of length at most 2.

1.4.30. Proposition. (Landau [1953]) Every tournament has a king.

Proof: Let x be a vertex in a tournament T. If x is not a king, then some vertex
¥ i8 not reachable from x by a path of length at most 2. Hence no successor of
x is a predecessor of y. Since T is an orientation of a clique, every successor of
x must therefore be a successor of y. Also y — x. Hence d*(y) > d*(x).
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If y is not a king, then we repeat the argument to find z with yet larger
outdegree. Since T is finite, we cannot forever obtain vertices of successively
higher outdegree. The procedure must terminate, and it can terminate only
when we have found a king. [ |

N~ (x) Nt (x)

In the language of extremality, we have proved that every vertex of maxi-
mum outdegree in a tournament is a king. Exercises 36-38 ask further ques-
tions about kings (see also Maurer [1980]). Exercise 39 generalizes the result
to arbitrary digraphs.

EXERCISES

1.4.1. (—) Describe a relation in the real world whose digraph has no cycles. Describe
another that has cycles but is not symmetric.

1.4.2. (—) In the lightswitch system of Application 1.4.4, suppose the first switch be-
comes disconnected from the wiring. Draw the digraph that models the resulting system.

1.4.3. (-) Prove that every u, v-walk in a digraph contains a u, v-path.

1.44. (=) Prove that every closed walk of odd length in a digraph contains the edges of
an odd cycle. (Hint: Follow Lemma 1.2.15.) -

1.4.5. (—) Let G be a digraph in which indegree equals outdegree at each vertex. Prove
that G decomposes into cycles.

1.4.8. (—) Draw the de Bruijn graphs D; and D,.

1.4.7. (=) Prove or disprove: If D is an orientation of .a simple graph with 10 vertices,
then the vertices of D cannot have distinct outdegrees.

1.4.8. (—) Prove that there is an n-vertex tournament with indegree equal to outdegree
at every vertex if and only if n is odd.

L] L] L] L ] L
1.4.9. For each n > 1, prove or disprove: Every simple digraph with n vertices has two
vertices with the same outdegree or two vertices with the same indegree.

1.4.10. (!) Prove that a digraph is strongly connected if and only if for each partition of
the vertex set into nonempty sets § and T, there is an edge from Sto T.

1.4.11. (!) Prove that in every digraph, some strong component has no entering edges,
and some strong component has no exiting edges.

1.4.12. Prove that in a digraph the connection relation is an equivalence relation, and
its equivalence classes are the vertex sets of the strong components.
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1.4.13. a) Prove that the strong components of a digraph are pairwise disjoint.

b) Let Dy, ..., Dy be the strong components of a digraph D. Let D* be the loopless
digraph with vertices v1, ..., v such that v; — v; if and only if i # j and D has an edge
from D; to D;. Prove that D* has no cycle.

)

D 1 D*
)

1.4.14. (!) Let G be an n-vertex digraph with no cycles. Prove that the vertices of G can
be ordered as vy, ..., v, so that if y;v; € E(G), theni < j.

1.4.15. Let G be the simple digraph with vertex set {(i, j) e Z%2 0 <i <m and 0 < n}
and an edge from (i, j) to (i’, j') if and only if (i’, j') is obtained from (i, j) by adding 1
to one coordinate. Prove that the number of paths from (0, 0) to (m, n) in G is ("}").

1.4.16. (+) Fermat’s Little Theorem. Let Z, denote the set of congruence classes of
integers modulo n (see Appendix A). Let @ be a natural number having no common
prime factors with n; multiplication by a defines a permutation of Z,. Let / be the least
natural number such that a' = a mod n.
a) Let G be the functional digraph with vertex set Z, for the permutation defined
by multiplication by a. Prove that all cycles in G (except the loop on n) have length I — 1.
b) Conclude from part (a) that a"~1 = 1 mod n.

1.4.17. (x) Prove that a (directed) odd cycle is a digraph with no kernel. Construct a
digraph that has an odd cycle as an induced subgraph but does have a kernel.

1.4.18. (+) Prove that a digraph having no cycle has a unique kernel.

1.4.19. Use Lemma 1.4.23 and induction on the number of edges to prove the charac-
terization of Eulerian digraphs (Theorem 1.4.24). (Hint: Follow Theorem 1.2.26.)

1.4.20. Prove the characterization of Eulerian digraphs (Theorem 1.4.24) using the
notion of maximal trails. (Hint: Follow 1.2.32, the second proof of Theorem 1.2.26.)

1.4.21. Theorem 1.4.24 establishes necessary and sufficient conditions for a digraph to
have an Eulerian circuit. Determine (with proof), the necessary and sufficient conditions
for a digraph to have an Eulerian trail (Definition 1.4.22). (Good [1946])

1.4.22. Let D be a digraph with 4~ (v) = d*(v) for every vertex v, except that d*(x) —
d~(x) =k =d~(y) — d*(y). Use the characterization of Eulerian digraphs to prove that
D contains k pairwise edge-disjoint x, y-paths.

1.4.23. Prove that every graph G has an orientation D that is “balanced” at each vertex,
meaning that |d}(v) — d;(v)| < 1 for every v € V(G).

1.4.24. Prove or disprove: Every graph G has an orientation such that for every S €
V(G), the number of edges entering § and leaving S differ by at most 1.

1.4.25. (!) Orientations and Ps-decomposition.

a) Prove that every connected graph has an orientation in which the number of
vertices with odd outdegree is at most 1. (Rotman [1991])

b) Use part (a) to conclude that a simple connected graph with an even number of
edges can be decomposed into paths with two edges.
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1.4.26. Arrange seven 0’s and seven 1's cyclically so that the 14 strings of forr consecu-
tive bits are a]l the 4-digit binary strings other than 0101 and 1010.

1.4.27. DeBruijn sequence for any alphabet and length. Let A be an alphabgt of size k.
Prove that there exists a cyclic arrangement of k' characters chosen from A such that
the k' stripgd of length I in the sequence are all distinct. (Good [1946], Reef [1946])

1.4.28. Let S\be an alphabet of size m. Explain how to produce a cyclic ajrangement of
m* — m letters from § such that all four-letter strings of consecutive letters are different
and contain at |east two distinct letters.

1.4.29. (!) Suppose that G is a graph and D is an orientation of G/that is strongly
connected. Prove that if G has an odd cycle, then D has an odd cycle/ (Hint: Consider
each pair {v;, v} in an odd cycle (vy, ..., v) of G.)

1.4.30. (+) Giver| a strong digraph D, let f(D) be the length of the ghortest closed walk
visiting every vertex. Prove that the maximum value of f(D) ovey all strong digraphs
with n vertices is | (n + 1)3/4J ifn > 2. (Cull [1980])

1.4.31. Determind the minimum » such that there is a pair of flonisomorphic n-vertex
tournaments with the same list of outdegrees.

14.32. Let p = p\...., pn and ¢ = q1,...,q, be lists of ngnnegative integers. The
pair (p, ) is bigraphic if there is a simple bipartite graph if which pi,..., p. are the
degrees for one partite set and ¢, ..., g, are the degrees for the other. When p has
positive sum, prove \that (p, ¢) is bigraphic if and only if/(p’, ¢') is bigraphic, where
(P', q") is obtained frdm (p, ) by deleting the largest element A from p and subtracting
1 from each of the A 1jrgest elements of g. (Hint: Follow tl{e method of Theorem 1.3.31.)

1.4.33. (x) Let A and B be two m by n matrices with fntries in {0, 1}. An exchange
operation substitutes 4 submatrix of the form ('1’;] for a gubmatrix of the form (;2) or vice
versa. Prove that if A and B have the same list of roy sums and have the same list of
column sums, then A cin be transformed into B by a/sequence of exchange operations.
Interpret this conclusioh in the context of bipartite graphs. (Ryser [1957])

1.4.34. () Let G and H He two tournaments on a yértex set V. Prove that df (v) = dj;(v)
for all v € V if and only if G can be turned into/H by a sequence of direction-reversals
on cycles of length 3. (Hin\t: Consider a vertey of maximum outdegree in the subgraph
of G consisting of edges oriented oppositely i H.) (Ryser [1964])

1.4.35. (+) Let py, ..., p, b nonnegativeintegers with p; < --- < p,. Let p, = 3"+ pi.
Prove that there exists a toufnamenj/Avith outdegrees p, ..., p, if and only if p; > ()
for 1 <k <nand p), = (3). (Hint: Wee induction on Y, , [p} — (3)].) (Landau [1953])

1.4.36. By Proposition 1.4.30, ¥very tournament has a king. Let T be a tournament
having no vertex with indegreg §.

a) Prove that if x is a kiglg in\ T, then T has another king in N~ (x).

b) Use part (a) to provefhat X has at least three kings.

¢) For each n > 3, consfruct a fournament T with §~(T) > 0 and only 3 kings.

(Comment: There exjsts an n-vwertex tournament having exactly k kings whenever
n > k = 1 except when k/= 2 and whin n = k = 4.) (Maurer [1980])

1.4.37. Consider the/ollowing algori whose input is a tournament 7.
1) Select averjex x in T.
2) If x has indegree 0, call x a king of T and stop.
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3) Otherwisy, delete {x} U N*(x) from T to form T'.
4) Run the algorithm on T”; call the output a king in T and stop.
Prove that this algprithm terminates and produces a king in T

1.4.38. (+)Forn e N i i ich g/fery vertex
is a king if and only

vertices such that every vertex outside § is reached from S by a pgth of length at most
2. (Hint: Use strong induction on n(D). Comment: This generaljZes Proposition 1.4.30.)
(Chvétal-Lovasz [1974]

et T, be the tournament on n yértices with the edge between
e vertex with larger index. W
of 7,7 How many unipé

evdrse edge (this may increase the number of reverse
0, L1, -+~ is produced by successively switching one
ove that this a]ways leads to a list wu;h no reverse

, v, of the vertices of a tournament, let f(o) be
edges, meaning the sum of j — i over edges v;v;
ing minimizing f(o) places the vertices in non-
ermine how f (o) changes when consecutive
noto [1983], Isaak—-Tesman [1991])

thesum

% ements of o are exchanged ) (Kano—Saka

Chapter 2

Trees and Distance

2.1. Basic Properties

The word “tree” suggests branching out from a root and never completing
a cycle. Trees as graphs have many applications, especially in data storage,
searching, and communication.

2.1.1. Definition. A graph with no cycle is acyclic. A forest is an acyclic
graph. A tree is a connected acyclic graph. A leaf (or pendant vertex)
is a vertex of degree 1. A spanning subgraph of G is a subgraph with
vertex set V(G). A spanning tree is a spanning subgraph that is a tree.
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2.1.2. Example. A tree is a connected forest, and every component of a forest
is a tree. A graph with no cycles has no odd cycles; hence trees and forests are
bipartite.

Paths are trees. A tree is a path if and only if its maximum degree is 2. A
star is a tree consisting of one vertex adjacent to all the others. The n-vertex
star is the biclique K7 ,-1.

A graph that is a tree has exactly one spanning tree; the full graph itself.
A spanning subgraph of G need not be connected, and a connected subgraph of
G need not be a spanning subgraph. For example:

If n(G) > 1, then the empty subgraph with vertex set V(G) and edge set @
is spanning but not connected.

If n(G) > 2, then a subgraph consisting of one edge and its endpomts is
connected but not spanning. =]
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